The intracellular expression of gamma-toxin (a 232-amino acid polypeptide) arrests the growth of Saccharomyces cerevisiae by incising a single RNA phosphodiester 3′ of the modified wobble base of tRNA(Glu). Fungal gamma-toxin bears no primary structure similarity to any known nuclease and has no plausible homologs in the protein
database. To gain insight to gamma-toxin’s mechanism, we tested the effects of alanine mutations at 62 basic, acidic, and polar amino acids on ribotoxin activity in vivo. We thereby identified 22 essential residues, including 10 lysines, seven arginines, three glutamates, one cysteine, and one histidine (His209, the only histidine present in gamma-toxin). Structure-activity relations were gleaned from the effects of selleckchem 44 conservative substitutions. Recombinant tag-free gamma-toxin, a monomeric protein, incised an oligonucleotide corresponding to the anticodon stem-loop of tRNA(Glu) at a single phosphodiester 3′ of the wobble uridine. The anticodon nuclease was metal independent. RNA cleavage was abolished by ribose 2′-H and 2′-F modifications of the wobble uridine.
Mutating His209 to alanine, glutamine, or asparagine abolished nuclease activity. We propose that gamma-toxin catalyzes an RNase A-like transesterification reaction that relies on His209 and a second nonhistidine side chain as general acid-base catalysts.”
“Background: Enterococcus faecalis, traditionally considered a harmless commensal of the intestinal Selleck HKI 272 tract, is now ranked among the leading causes of nosocomial infections. In an attempt
to gain insight into the genetic Selleckchem Gilteritinib make-up of commensal E. faecalis, we have studied genomic variation in a collection of community-derived E. faecalis isolated from the feces of Norwegian infants.\n\nResults: The E. faecalis isolates were first sequence typed by multilocus sequence typing (MLST) and characterized with respect to antibiotic resistance and properties associated with virulence. A subset of the isolates was compared to the vancomycin resistant strain E. faecalis V583 (V583) by whole genome microarray comparison (comparative genomic hybridization (CGH)). Several of the putative enterococcal virulence factors were found to be highly prevalent among the commensal baby isolates. The genomic variation as observed by CGH was less between isolates displaying the same MLST sequence type than between isolates belonging to different evolutionary lineages.\n\nConclusion: The variations in gene content observed among the investigated commensal E. faecalis is comparable to the genetic variation previously reported among strains of various origins thought to be representative of the major E. faecalis lineages. Previous MLST analysis of E.